Система газоотвода
Назначение и состав системы
Система газоотвода (газовыпуска) обеспечивает наиболее рациональный отвод отработавших в цилиндре газов. Под рациональным отводом понимается такая организация газовыпуска, которая способствует максимальному использованию энергии рабочего тела как в цилиндре двигателя, так и вне его, а также качественной очистке и наполнению цилиндров. Кроме того, необходимо обеспечить минимальное по вредности воздействие на окружающую среду отработавших газов.
Система газоотвода состоит из выпускных коллекторов, утилизационных газовых турбин, утилизационных котлов, глушителей шума, газоводов (трубопроводов).
Выпускные коллекторы предназначены для отвода из цилиндров отработавших газов с максимально возможным сохранением их энергии. При этом они должны способствовать очистке цилиндров от остаточных газов. Утилизационные газовые турбины преобразуют механическую энергию отработавших в цилиндрах газов в крутящий момент, утилизационные котлы — тепловую энергию отработавших газов в энергию пара (воды). Глушители шума предназначены для снижения вредного звукового воздействия отработавших газов на окружающую среду.
Классификация систем. Системы газоотвода классифицируют по следующим признакам:
по глубине утилизации тепла — без утилизации теплоты, с умеренной утилизацией теплоты и с глубокой утилизацией теплоты. В системах без утилизации теплоты отработавшие в цилиндрах газы отводятся в окружающую среду без предварительного протекания через специальные устройства — утилизаторы. В системах с умеренной утилизацией теплоты механическая энергия отработавших в цилиндрах газов используется в газовых турбинах. В системах с глубокой утилизацией теплоты как механическая, так и тепловая энергия отработавших в цилиндрах газов используется в утилизаторах;
по особенностям движения газа в коллекторе — изобарные, импульсные и комбинированные. В изобарных системах давление газов в коллекторе при работе двигателя на установившемся режиме практически постоянно, в импульсных— переменно и зависит от числа цилиндров из которых отводятся газы в один коллектор. Для комбинированных систем характерны переменное давление газа в коллекторе и выравнивание его перед турбиной.
Схемы систем
Схема импульсной системы газоотвода с глубокой утилизацией теплоты приведена на рис. 5.
Отработавшие в цилиндрах двигателя 1 газы поступают в коллектор малого объема 2, затем в утилизационную газовую турбину 3, преобразующую скорость и давление газов в крутящий момент. Из турбины 3 газы поступают в утилизационный котел 4, где тепловая энергия газов преобразуется в энергию водяного пара. Далее газы попадают в глушитель шума 5 и наконец в атмосферу.
В системах газоотвода вспомогательных двигателей утилизатор 4 часто отсутствует, на маломощных двигателях может отсутствовать и турбина 3.
Определение уравновешивающей силы с помощью теоремы Н. Е. Жуковского о
«жестком рычаге»
Если в соответствующие точки повернутого на 90° плана скоростей перенести все внешние силы, действующие на механизм, силы инерции, уравновешивающую силу, то план скоростей, рассматриваемый как жесткий рычаг относительно полюса p, будет находится в равновесии, т.е. сумма моментов всех сил относитель ...
Выбор гидроцилиндра
Усилие штока, развиваемое гидроцилиндром [4]: Fшт = S ∙ r(1) где S − площадь поршня, м2; r − удельное давление на 1 с2 площади поршня, r = 2,4 МПа. Площадь поршня вычисляется по формуле: S = p ∙ dтр2 / 4,(2) где dтр − требуемый диаметр поршня. Fшт = p ∙ dтр2 / 4 ...
Расчет и построение электромеханических и электрических тяговых
характеристик ТЭД с учетом параметров КМБ
Электротяговые характеристики Fкд=f(Iд) и V=f(Iд) отражают изменение механических параметров на ободе колеса. Поэтому они также называются электромеханическими характеристиками ТЭД, отнесенными к ободу колеса локомотива. Зависимость силы тяги Fкд на ободе колеса, развиваемой двигателем, от тока яко ...